If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+14x-50=0
a = 2; b = 14; c = -50;
Δ = b2-4ac
Δ = 142-4·2·(-50)
Δ = 596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{596}=\sqrt{4*149}=\sqrt{4}*\sqrt{149}=2\sqrt{149}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{149}}{2*2}=\frac{-14-2\sqrt{149}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{149}}{2*2}=\frac{-14+2\sqrt{149}}{4} $
| 21+x=11-3x | | x+8=94 | | 7(m-7)=2(11+m) | | 2p-6=4p+24 | | x-8=94 | | 12x+12=8x+16 | | X^2–20x+450=0 | | 2x^2+4x+4=225 | | -0.7x+(0.5x-3)²=0.5x+6.4+(0.5x+1)² | | 7x+18+20x=91+16x-4x | | 5(x-2)+5=300 | | 3(x+1,5)=2,4 | | x÷3+8=-2 | | 2y=7y | | -2=5t+3 | | 0=n^2-10n+5 | | 2/3x-1/2=5/6x+3/4 | | 41+2y=-3 | | 6x+9=4x−11 | | -2x+6=-40 | | 24+4x=30+3x | | 3Y+5÷16y=2 | | 4(5x–1)=3(2x+1) | | 4x-30x=0 | | -4(x+4)=2(x+10 | | 12/x+6=8 | | 5/7y+2=1/2y+2 | | 52x-3=11 | | 3x+8/5=-4x-5/9 | | 3-4b=b-5 | | 9-6(3x+2)=5x+-3-13x | | 5x/7=1.5 |